

Metoda elementów skończonych (MES1)

Wykład 3B. Tarcza 2D modelowana elementami CST

03.2022

Przypomnienie dla elementu CST w stanie PSN

			۲	Nylicz	anie	mac	cierzy e	eler	nent	tu 1							
y t		80		33) E E ni	ilement = i=	t h A	e=	1 7.00 0.3333 200	0E+04 MF 33333 2 mi 00 mi	^p a m m ²	[B]	$=\frac{1}{2A_e}\begin{bmatrix}b\\c\\c\end{bmatrix}$	$\begin{array}{ccc} & 0 \\ b & c_1 \\ 1 & b_1 \end{array}$	$ \begin{array}{ccc} b_2 & 0 \\ 0 & c_2 \\ c_2 & b_2 \end{array} $	b_3 0 c_3	$\begin{bmatrix} 0 \\ c_3 \\ b_3 \end{bmatrix}$
notacjo lokalno	x 1 1	$\begin{array}{c} 20 \\ 10 \\ 0 \end{array}$	10 20 30	40 50 (2)	a _i = b _i = c _i =	$= x_j y_k - y_j - y_k$ $= y_j - y_k$ $= x_k - x_j$	x _k) c i	^y j				$[D] = \frac{1}{(1)}$	$\frac{E}{-\nu^2}$	1 ν ν 1 0 0	$0 \\ 0 \\ \frac{1}{2}(1 - $	ν)]
1 n 2 3	ode 1 2 3	x i 0 50 50	yi 0 0 80	x 5(5(j	уј 0 80 0	x k 50 0 50		(٤	/ k 30 0 0	ai 400 0 0)0	bi -80 80 0		ci 0 -50 50)	
	-	0.02	0	0.02	(0	0		0				0.02	0		0	
B ₁ =		0	0	0	-0.0)125	0	0.(0125	E	3₁ [⊤] =		0	0	-(0.02	
		0	-0.02	-0.0125	0.0	02	0.0125		0			(0.02	0	-0.	0125	
													0	-0.012	5 0	0.02	
			78750)	26250		0		_				0	0	0.	0125	
		D=	26250)	78750		0						0	0.012	5	0	
			0		0		26250										

Wyliczanie macierzy elementu 1

	31.5	0	-31.5	6.5625	0	-6.5625
	0	10.5	6.5625	-10.5	-6.5625	0
$B_1^T D B_1 =$	-31.5	6.5625	35.60156	-13.125	-4.10156	6.5625
6×3 3×3 3×6	6.5625	-10.5	-13.125	22.80469	6.5625	-12.3047
	0	-6.5625	-4.10156	6.5625	4.101563	0
	-6.5625	0	6.5625	-12.3047	0	12.30469

Przykład wymnażania macierzy:

1 1 Zymuu	vv y mma		ucici Ly:	D		B ₁							
			78750	26250	0	-0.02	0	0.02	0	0	0		
	-		26250	78750	0	0	0	0	-0.0125	0	0.0125		
E	3 1'		0	0	26250	0	-0.02	-0.0125	0.02	0.0125	0		
-0.02	0	0				31.5	0	-31.5	6.5625	0	-6.5625		
0	0	-0.02				0	10.5	6.5625	-10.5	-6.5625	0		
0.02	0	-0.0125				-31.5	6.5625	35.60156	-13.125	-4.10156	6.5625		
0	-0.0125	0.02				6.5625	-10.5	-13.125	22.80469	6.5625	-12.3047		
0	0	0.0125				0	-6.5625	-4.10156	6.5625	4.101563	0		
0	0.0125	0				-6.5625	0	6.5625	-12.3047	0	12.30469		

80	3	Wyliczar	nie macie	rzy sztyv	vn	ości	ele	men	tu	1			
60				31.5		0	4	31.5	6.	5625		0	-6.5625
40				0	1	0.5	6.	5625	-1	10.5	-6.	5625	0
20		B ₁	[⊤] DB₁=	-31.5	6.	5625	35.	60156	-13	3.125	-4.1	10156	6.5625
	20 30 40 50			6.5625	- '	10.5	-13	3.125	22.	80469	6.	5625	-12.3047
				0	-6.	5625	-4.1	10156	6.	5625	4.1	01563	0
$[k]_{e} =$	$= A_e t_e [B]_{6 \times 3}$	$\begin{bmatrix} I \\ D \end{bmatrix} \begin{bmatrix} B \\ B \end{bmatrix}$		-6.5625		0	6.	5625	-12	.3047		0	12.30469
macier	z sztywności	elementu 1:											
			u	v		u		v		u		v	
			1	1		2		2		3		3	
	u	1	126000	0		-1260	000	262(50	0		-262	50
	V	1	0	42000		262	50	-420	00	-262	50	0	
k 1=	u	2	-126000	26250		14240	06.3	-525	00	-1640	6.3	262	50
	v	2	26250	-42000		-525	00	91218	8.75	262	5 0	-4921	8.8
	u	3	0	-26250		-1640	6.3	262	50	16406	6.25	0	
	v	3	-26250	0		262	50	-4921	8.8	0		49218	8.75

Wyznaczenie rozszerzonej macierzy sztywności elementu 1

rozszerzona macierz sztywności elementu 1:

		u1	v1	u2	v2	u3	v3	u4	v4
	u1	126000	0	-126000	26250	0	-26250	0	0
	v1	0	42000	26250	-42000	-26250	0	0	0
	u2	-126000	26250	142406.3	-52500	-16406.3	26250	0	0
k ₁ *=	v2	26250	-42000	-52500	91218.75	26250	-49218.8	0	0
	u3	0	-26250	-16406.3	26250	16406.25	0	0	0
	٧3	-26250	0	26250	-49218.8	0	49218.75	0	0
	u4	0	0	0	0	0	0	0	0
	v4	0	0	0	0	0	0	0	0

	3 80 4		2	Wylicz	zenie	macierzy	v elementu	ı 2		
y t x	70 60 50 40 30 20			Element E= ni=	he Ae P _{max}	2 7.00E+04 0.33333333 e= 2 2 e= 2000 r c= 60 r	MPa mm mm² MPa	$[B] = \frac{1}{2A_e} \begin{bmatrix} b_1 \\ 0 \\ c_1 \end{bmatrix}$	$\begin{array}{cccc} & 0 & b_2 \\ & c_1 & 0 \\ & b_1 & c_2 \end{array}$	$ \begin{array}{cccc} 0 & b_3 & 0 \\ c_2 & 0 & c_3 \\ b_2 & c_3 & b_3 \end{array} $
local notation	$\begin{array}{c} 10 \\ 0 \\ 1 \end{array}$) 20 30 40	50	$a_i = b_i = c_i = c_i$	$x_j y_k - y_j - y_j - y_k - $	- x _k yj [/] k x _j		$[D] = \frac{1}{(1)}$	$\frac{E}{-\nu^2} \begin{bmatrix} 1\\ \nu\\ 0 \end{bmatrix}$	$ \begin{array}{ccc} \nu & 0 \\ 1 & 0 \\ 0 & \frac{1}{2}(1-\nu) \end{array} $
1 node 2 3 3 4	x i 0 50 0	yi 0 80 80	x j 50 0 0	yj 80 80 0	x k 0 0 50	y k 80 0 80	ai 4000 0	bi 0 0 80 - <u>80</u>		ci -50 0 50
	0	0	0.02	0	-0.02	2 0		0	0	-0.0125
B ₂ =	0	-0.0125	0	0	0	0.0125	$\mathbf{B}_2^{T} =$	0	-0.0125	0
	-0.0125	0	0	0.02	0.012	5 -0.02		0.02	0	0
							1	0	0	0.02
			78750	2625	0	0		-0.02	0	0.0125
		D=	26250	7875	0	0		0	0.0125	-0.02
			0	0		26250				

Wyliczenie macierzy sztywności elementu 2

3			4.10156	625	0	0	-6.5625	-4.10156	6.5625
			0		12.30469	-6.5625	0	6.5625	-12.3047
	$\mathbf{B}_2^T \mathbf{D} \mathbf{B}_2$	3 2=	0		-6.5625	31.5	0	-31.5	6.5625
			-6.562	!5	0	0	10.5	6.5625	-10.5
0			-4.1015	625	6.5625	-31.5	6.5625	35.60156	-13.125
			6.562	5	-12.3047	6.5625	-10.5	-13.125	22.80469
ci eleme	ntu 2:								
			u		v	u	v	u	v
			1		1	3	3	4	4
u	1	164	06.25		0	0	-26250	-16406.3	26250

macierz sztywności elementu 2:

			u	V	u	v	u	V
			1	1	3	3	4	4
	u	1	16406.25	0	0	-26250	-16406.3	26250
	v	1	0	49218.75	-26250	0	26250	-49218.8
k ₂ =	u	3	0	-26250	126000	0	-126000	26250
	v	3	-26250	0	0	42000	26250	-42000
	u	4	-16406.25	26250	-126000	26250	142406.3	-52500
	v	4	26250	-49218.75	26250	-42000	-52500	91218.75

Wyznaczenie rozszerzonej macierzy sztywności elementu 2

rozszerzona macierz sztywności elementu 2:

	u1	v1	u2	v2	u3	v3	u4	V4
u1	16406.25	0	0	0	0	-26250	-16406.3	26250
v1	0	49218.75	0	0	-26250	0	26250	-49218.75
u2	0	0	0	0	0	0	0	0
v2	0	0	0	0	0	0	0	0
u3	0	-26250	0	0	126000	0	-126000	26250
v3	-26250	0	0	0	0	42000	26250	-42000
u4	-16406.3	26250	0	0	-126000	26250	142406.3	-52500
v4	26250	-49218.8	0	0	26250	-42000	-52500	91218.75
	u1 v1 u2 v2 u3 v3 u4 v4	u1 u1 16406.25 v1 0 u2 02 v2 03 03 v3 -26250 u4 26250	u1v1u116406.250v1049218.75u200v200u30-26250v3-262500u4-16406.326250v426250-49218.8	u1v1u2u116406.2500v1049218.750u2000v2000u30-262500v3-2625000u4-16406.3262500v426250-49218.80	u1v1u2v2u116406.25000v1049218.7500u20000v20000v20000v3-26250000u4-16406.32625000v426250-49218.800	u1v1u2v2u3u116406.25000v1049218.7500-26250u200000v200000u30-26250000u3-26250000126000v3-262500000u4-16406.32625000126000v426250-49218.80026250	u1v1u2v2u3v3u116406.25000-26250v1049218.7500-262500u2000000v2000000v30-262500000u30-262500000v3-2625000000u4-16406.3262500012600026250v426250-49218.80026250-42000	u1v1u2v2u3v3u4u116406.25000-26250-16406.3v1049218.7500-26250026250u20000-26250026250u20000000v20000000u30-26250001260000-126000v3-262500001260002625026250u4-16406.3262500026250-42000-52500v426250-49218.80026250-42000-52500

Wyznaczenie globalnej macierzy sztywności

v4

u4	v4
	V T
-16406.3	26250
26250	-49218.75
0	0
0	0
-126000	26250
26250	-42000
142406.3	-52500
-52500	91218.75
	0 -16406.3 26250 0 0 0 0 -126000 0 26250 0 142406.3 00 -52500

rozszerzona macierz sztywności elementu 2:

11

u3

v3

u4

v2

u1

v1

u2

	u1	126000	0	-126000	26250	0	-26250	0	0		u1	16406.25	0	0	0	0	-
	v1	0	42000	26250	-42000	-26250	0	0	0		v1	0	49218.75	0	0	-26250	
	u2	-126000	26250	142406.3	-52500	-16406.3	26250	0	0		u2	0	0	0	0	0	
k 1*	v 2	26250	-42000	-52500	91218.75	26250	-49218.8	0	0	k ₂ *	v 2	0	0	0	0	0	
	u3	0	-26250	-16406.3	26250	16406.25	0	0	0		u3	0	-26250	0	0	126000	
	v3	-26250	0	26250	-49218.8	0	49218.75	0	0		v3	-26250	0	0	0	0	
	u4	0	0	0	0	0	0	0	0		u4	-16406.3	26250	0	0	-126000	
	v4	0	0	0	0	0	0	0	0		v4	26250	-49218.8	0	0	26250	-
	glob	oalna	maci	erz sz	tywr 1	ności: v1	u2	>	V2	и3	V3	u4	L	v4			
								-									
			u 1	1424	06.3	0	-1260	00	26250	0	-52500	-1640	6.3	26250)		
			v1	C) 9	1218.75	2625	50	-42000	-52500	0	2625	50	-49218.	75		
			u2	-126	000	26250	14240	6.3	-52500	-16406.3	26250	0		0			
	K	=	v2	262	250	-42000	-5250	00 9	1218.75	26250	-49218.8	0		0			
	NDOF × ND	OF	u3	C		-52500	-1640	6.3	26250	142406.3	0	-1260	00	26250)		
			v3	-528	500	0	2625	50 -	49218.8	0	91218.75	2625	50	-4200	D		
			u4	-164	06.3	26250	0		0	-126000	26250	14240	6.3	-5250	D		
			v4	262	250 -	49218.8	0		0	26250	-42000	-5250	00	91218.	75		

Wprowadzenie warunków brzegowych do globalnej macierzy sztywności

Wektor obciążenia równoważnego od sił powierzchniowych

$$F_{1}^{p} = h_{0}^{l} p_{x}(s) N_{1}(s) ds = h_{0}^{l} 0 \cdot 0 ds = 0$$

$$F_{2}^{p} = h_{0}^{l} p_{y}(s) N_{1}(s) ds = h_{0}^{l} p_{\max}(1 - \frac{s}{l}) \cdot 0 ds = 0$$

$$F_{3}^{p} = h_{0}^{l} p_{x}(s) N_{2}(s) ds = h_{0}^{l} 0 \cdot \frac{s}{l_{1}} ds = 0$$

$$F_{4}^{p} = h_{0}^{l} p_{y}(s) N_{2}(s) ds = h_{0}^{l} p_{\max}(1 - \frac{s}{l}) \cdot \frac{s}{l} ds = \frac{1}{6} p_{\max} lh = 1000N$$

$$F_{5}^{p} = h_{0}^{l} p_{x}(s) N_{3}(s) ds = h_{0}^{l} 0 \cdot (1 - \frac{s}{l}) ds = 0$$

$$F_{6}^{p} = h_{0}^{l} p_{y}(s) N_{3}(s) ds = h_{0}^{l} p_{\max}(1 - \frac{s}{l}) \cdot (1 - \frac{s}{l}) ds = \frac{1}{3} p_{\max} lh = 2000N$$

	0
	0
	0
F ^e =	0
	0
	1000
	0
	2000

Wyznaczenie poszukiwanych przemieszczeń węzłowych

	0		Rx1		Rx1
	0		Ry1		Ry1
	0		0		0
$F^e =$	0	F ⁿ =	Ry2	F=	Ry2
	0		0	NDOF x 1	0
	1000		0		1000
	0		Rx4		Rx4
	2000		0		2000

		u2	u3	v3	v4			u2	u3	٧3	v4
	u2	142406.3	-16406.3	26250	0		u2	7.71864E-06	1.20993E-06	-3.02221E-06	-1.7397E-06
K=	u3	-16406.3	142406.3	0	26250	K ⁻¹ =	u3	1.20993E-06	7.71864E-06	-1.7397E-06	-3.02221E-06
N×N	٧3	26250	0	91218.75	-42000	N×N	v3	-3.02221E-06	-1.7397E-06	1.53082E-05	7.54899E-06
	v4	0	26250	-42000	91218.75		v4	-1.7397E-06	-3.02221E-06	7.54899E-06	1.53082E-05

	-0.006502	mm	u2
q=	-0.007784	mm	u3
N × 1	0.030406	mm	٧3
	0.038165	mm	v4

Wyznaczenie energii sprężystej w elementach

node	Xİ	yi	Xj	УĴ	xk	y k	ai	bi	Cİ
1	0	0	50	0	50	80	4000	-80	0
2	50	0	50	80	0	0	0	80	-50
3	50	80	0	0	50	0	0	0	50

$$N_{1}(x_{p}, y_{p}) = N_{1}(12.5, 20) = \frac{a_{1} + b_{1}x_{p} + c_{1}y_{p}}{2 \cdot A_{e}} = \frac{4000mm^{2} + (-80mm) \cdot 12.5mm + 0mm \cdot 20mm}{2 \cdot 2000mm^{2}} = \frac{3}{4}$$

$$N_{2}(x_{p}, y_{p}) = N_{2}(12.5, 20) = \frac{a_{2} + b_{2}x_{p} + c_{2}y_{p}}{2 \cdot A_{e}} = \frac{0 + 80 \cdot 12.5 + (-50) \cdot 20}{2 \cdot 2000} = 0$$

$$N_{3}(x_{p}, y_{p}) = N_{3}(12.5, 20) = \frac{a_{3} + b_{3}x_{p} + c_{3}y_{p}}{2 \cdot A_{e}} = \frac{0 + 0 \cdot 12.5 + 50 \cdot 20}{2 \cdot 2000} = \frac{1}{4}$$

Wyznaczenie rozwiązania w punkcie P na granicy elementów

$$\begin{split} N_{1}(12.5,20) + N_{2}(12.5,20) + N_{3}(12.5,20) &= \frac{3}{4} + 0 + \frac{1}{4} = 1 \\ I_{1}x = \sum_{i=1}^{3} N_{i}(x,y) \cdot x_{i} \Longrightarrow x_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot x_{i} = N_{1} \cdot x_{1} + N_{2} \cdot x_{2} + N_{3} \cdot x_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot 50 + \frac{1}{4} \cdot 50 = 12.5 \text{ mm} \\ y = \sum_{i=1}^{3} N_{i}(x,y) \cdot y_{i} \Longrightarrow y_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot y_{i} = N_{1} \cdot y_{1} + N_{2} \cdot y_{2} + N_{3} \cdot y_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot 0 + \frac{1}{4} \cdot 80 = 20 \text{ mm} \\ u = \sum_{i=1}^{3} N_{i}(x,y) \cdot u_{i} \Longrightarrow u_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot u_{i} = N_{1} \cdot u_{1} + N_{2} \cdot u_{2} + N_{3} \cdot u_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot (-0.006502) + \frac{1}{4} \cdot (-0.007784) = -0.00195 \text{ mm} \\ v = \sum_{i=1}^{3} N_{i}(x,y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot (-0.006502) + \frac{1}{4} \cdot (-0.007784) = -0.00195 \text{ mm} \\ v = \sum_{i=1}^{3} N_{i}(x,y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot 0 + \frac{1}{4} \cdot 0.030406 = 0.0076 \text{ mm} \\ \end{bmatrix}$$

	0	mm	u1
	0	mm	v1
q 1=	-0.006502	mm	u2
ne x 1	0	mm	v2
	-0.007784	mm	u3
	0.030406	mm	٧3

$$\begin{split} N_1(x_p, y_p) &= N_1(12.5, 20) = \frac{a_1 + b_1 x_p + c_1 y_p}{2 \cdot A_e} = \frac{4000 mm^2 + 0 mm \cdot 12.5 mm + (-50 mm) \cdot 20 mm}{2 \cdot 2000 mm^2} = \frac{3}{4} \\ N_2(x_p, y_p) &= N_2(12.5, 20) = \frac{a_2 + b_2 x_p + c_2 y_p}{2 \cdot A_e} = \frac{0 + 80 \cdot 12.5 + 0 \cdot 20}{2 \cdot 2000} = \frac{1}{4} \\ N_3(x_p, y_p) &= N_3(12.5, 20) = \frac{a_3 + b_3 x_p + c_3 y_p}{2 \cdot A_e} = \frac{0 + (-80) \cdot 12.5 + 50 \cdot 20}{2 \cdot 2000} = 0 \end{split}$$

Wyznaczenie rozwiązania w punkcie P na granicy elementów

$$\begin{split} N_{1}(12.5,20) + N_{2}(12.5,20) + N_{3}(12.5,20) &= \frac{3}{4} + \frac{1}{4} + 0 = 1 \\ x = \sum_{i=1}^{3} N_{i}(x, y) \cdot x_{i} \Longrightarrow x_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot x_{i} = N_{1} \cdot x_{1} + N_{2} \cdot x_{2} + N_{3} \cdot x_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 50 + 0 \cdot 0 = 12.5 \text{ mm} \\ y = \sum_{i=1}^{3} N_{i}(x, y) \cdot y_{i} \Longrightarrow y_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot y_{i} = N_{1} \cdot y_{1} + N_{2} \cdot y_{2} + N_{3} \cdot y_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 80 + 0 \cdot 80 = 20 \text{ mm} \\ u = \sum_{i=1}^{3} N_{i}(x, y) \cdot u_{i} \Longrightarrow u_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot u_{i} = N_{1} \cdot u_{1} + N_{2} \cdot u_{2} + N_{3} \cdot u_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot (-0.007784) + 0 \cdot 0 = -0.00195 \text{ mm} \\ v = \sum_{i=1}^{3} N_{i}(x, y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot (-0.007784) + 0 \cdot 0 = -0.00195 \text{ mm} \\ v = \sum_{i=1}^{3} N_{i}(x, y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot (0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ v_{3} v_{4} \text{ notacja globalna} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ &= \frac{1}{4} \cdot 0.030406 + 0 \cdot 0.$$

	0	mm	u1
	0	mm	v1
q ₂ =	-0.007784	mm	u3
ne x 1	0.030406	mm	v3
	0	mm	u4
	0.038165	mm	v4

Przemieszczenia w punkcie P na granicy elementów

UX displacement

Przemieszczenia w punkcie P na granicy elementów

UY displacement

Odkształcenia w punkcie P na granicy elementów

Wpływ dyskretyzacji na jakość wyników

